O-Methylation of tea polyphenols catalyzed by human placental cytosolic catechol-O-methyltransferase.

نویسندگان

  • B T Zhu
  • U K Patel
  • M X Cai
  • A H Conney
چکیده

In the present study, we evaluated the metabolic O-methylation of several catechol-containing tea polyphenols by human placental catechol-O-methyltransferase (COMT). (-)-Epicatechin, (+)-epicatechin, and (-)-epigallocatechin were good substrates for metabolic O-methylation by placental cytosolic COMT (150-500 pmol/mg of protein/min), but (-)-epicatechin gallate and (-)-epigallocatechin gallate were O-methylated at much lower rates (<50 pmol/mg of protein/min). When (-)-epicatechin was used as substrate, its O-methylation by human placental COMT showed dependence on incubation time, cytosolic protein concentration, incubation pH, and concentration of S-adenosyl-L-methionine (the methyl donor). Analysis of cytosolic COMT from six human term placentas showed that the O-methylation of increasing concentrations of (-)-epicatechin or (-)-epigallocatechin follows typical Michaelis-Menten kinetics, with K(m) and V(max) values of 2.2 to 8.2 microM and 132 to 495 pmol/mg of protein/min for (-)-epicatechin and 3.9 to 6.7 microM and 152 to 310 pmol/mg of protein/min for (-)-epigallocatechin, respectively. Additional analysis revealed that COMT-catalyzed O-methylation of (-)-epicatechin and (-)-epigallocatechin was strongly inhibited in a concentration-dependent manner by S-adenosyl-L-homocysteine (IC(50) = 3.2-5.7 microM), a demethylated product of S-adenosyl-L-methionine. This inhibition by S-adenosyl-L-homocysteine follows a mixed (competitive plus noncompetitive) mechanism of enzyme inhibition. In summary, several catechol-containing tea polyphenols are rapidly O-methylated by human placental cytosolic COMT. This metabolic O-methylation is subject to strong inhibitory regulation by S-adenosyl-L-homocysteine, which is formed in large quantities during the O-methylation of tea polyphenols.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-methylation of catechol estrogens by human placental catechol-o-methyltransferase: interindividual differences in sensitivity to heat inactivation and to inhibition by dietary polyphenols.

The human catechol-O-methyltransferase (COMT) is a polymorphic enzyme that catalyzes the O-methylation of catechol estrogens. Recent animal studies showed that placental COMT is involved in the development of placentas and embryos, probably via the formation of 2-methoxyestradiol. In this study, we analyzed a total of 36 human term placentas to determine their cytosolic COMT activity for the O-...

متن کامل

Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate.

(-)-Epigallocatechin gallate (EGCG) and (-)-epigallocatechin (EGC) are the major polyphenolic constituents in green tea. In this study, we characterized the enzymology of cytosolic catechol-O-methyltransferase (COMT)-catalyzed methylation of EGCG and EGC in humans, mice, and rats. At 1 microM, EGCG was readily methylated by liver cytosolic COMT to 4"-O-methyl-EGCG and then to 4',4"-di-O-methyl-...

متن کامل

Mechanisms for the inhibition of DNA methyltransferases by tea catechins and bioflavonoids.

In the present investigation, we studied the modulating effects of several tea catechins and bioflavonoids on DNA methylation catalyzed by prokaryotic SssI DNA methyltransferase (DNMT) and human DNMT1. We found that each of the tea polyphenols [catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate (EGCG)] and bioflavonoids (quercetin, fisetin, and myricetin) inhibited SssI DNMT- and DNMT1...

متن کامل

Strong inhibitory effects of common tea catechins and bioflavonoids on the O-methylation of catechol estrogens catalyzed by human liver cytosolic catechol-O-methyltransferase.

In the present investigation, we studied the inhibitory effects of three tea catechins [catechin, epicatechin, and (-)-epigallocatechin-3-O-gallate] and two bioflavonoids (quercetin and fisetin) on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E(2) and 4-OH-E(2), respectively) by human liver cytosolic catechol-O-methyltransferase (COMT). We found that catechin and epicatechin each inhibi...

متن کامل

Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols.

We studied the modulating effects of caffeic acid and chlorogenic acid (two common coffee polyphenols) on the in vitro methylation of synthetic DNA substrates and also on the methylation status of the promoter region of a representative gene in two human cancer cells lines. Under conditions that were suitable for the in vitro enzymatic methylation of DNA and dietary catechols, we found that the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 28 9  شماره 

صفحات  -

تاریخ انتشار 2000